天体收藏家-孙国佑

中国天文学会会员,埃格•威尔逊奖获得者,中国首颗银河系新星、亮红新星发现者,PSP公众超新星搜寻项目管理员,(546756)Sunguoyou – 孙国佑星。 严正声明:近期发现多个非法网站假冒本人网站,请广大爱好者注意甄别,谨防受骗!

2019年广东省中小学生天文知识竞赛高年组预赛(答案)

2019年12月1日 14:00-16:00 闭卷

注意事项:
1、本卷为闭卷考试,请答卷人按照自己的真实水平独立完成。在监考老师宣布考试结束时应停止答卷。交卷时只须将答题卡交回。
2、选择题全部为 单项选择 ,选择一个最接近正确的答案,答错不扣分。用 2B 铅笔将答题卡上相应的答案选框 涂黑涂满 ,并用钢笔或签字笔在答题卡上写上姓名、学校、考号等信息。切勿用钢笔、圆珠笔或自动铅笔涂答题卡,以免影响成绩。答题卡采用机器阅卷,由答卷人填涂答题卡失误或不规范造成的失分由其本人承担。
3、总分 100 分,每题 2 分,考试时间 105 分钟。
4、本场考试允许使用不具编程功能的计算器。
5、比赛结果将在广东天文学会网站和广东天文学会微信公众号公布。

Part 1. 天文热点

1575471151933511.png1. 这张照片是新视野号近距离拍摄的某柯伊伯带天体。下列说法不准确的是?(  )
(A)该天体编号为 2014 MU69
(B)该天体叫天涯海角
(C)新视野号与这颗天体表面的最小距离约3500公里
(D)该天体是人类已发现的最远的太阳系内天体

2. 2019年   ,NASA正式宣布机遇号火星车在失联8个月后,唤醒无效,结束任务。(  )
(A)2月14日 (B)3月14日
(C)4月14日 (D)5月14日

3. 关于隼鸟2号的探测任务,以下说法不准确的是?(  )
(A)它经过3年半飞行在2018年6月抵达小行星“龙宫”
(B)它计划对目标小行星进行2-3次采样
(C)它计划在2020年返回地球
(D)它在2019年4月初进行了第一次采样

4. 2019年4月,全球六地的天文学家举办新闻发布会,同时发布了人类第一张黑洞照片,该照片是由   拍摄的。(  )
(A)甚大阵(VLA)
(B)事件视界望远镜(EHT)
(C)央斯基甚大阵(JVLA)
(D)哈勃望远镜(HST)

5. 以下说法不准确的是?(  )
(A)2019年4月中旬,国家航天局宣布,中国第一颗小行星探测任务已经确定,将通过一次发射实现一颗近地小行星取样返回和一颗主带彗星绕飞探测。
(B)2019年8月,一位美国业余天文学家发现一颗小天体撞击木星产生明亮闪光。
(C)2019年6月24日,我国的500米球面射电望远镜和天马望远镜首次成功实现联合观测,获得甚长基线干涉测量(VLBI)干涉条纹。
(D)2019年11月,广东境内可观测到小行星掩毕宿四。

6. 2019年11月11日将发生水星凌日,以下哪个地方可见该天象的全过程?(  )
(A)西雅图
(B)迪拜
(C)布宜诺斯艾利斯
(D)新德里

7. 2019年全球范围发生了几次日食?(  )
(A)两次日全食
(B)三次日食
(C)仅一次日全食
(D)仅一次日环食

8. 2019年7月25日,一颗“几乎”撞上地球的小行星在过近地点的前一天被发现。该小行星是?(  )
(A)2019 OK
(B)2006 QQ23
(C)2010 RF12
(D)1036 Ganymed

9. 2019年双子座流星雨极大当天的月龄约为?(  )
(A)5.5日   (B)11.6日 
(C)17.3日 (D)29.5日

10. “个人一小步,人类一大步”。2019年是人类成功登月   周年。(  )
(A)30 (B)50 (C)70 (D)100

Part 2. 基础知识

11. 太阳系内拥有最多已发现的卫星的行星是?(  )
(A)海王星 (B)天王星
(C)土星  (D)木星

12. 截至2019年11月,人类已发现的太阳系外行星总数约为?(  )
(A)4100颗 (B)6500颗
(C)8300颗 (D)10000颗

13. 恒星的光度大致和它表面温度的   次方成正比。(  )
(A)1 (B)2 (C)3 (D)4

14. 《礼记·月令》记载:“仲冬之月,日在斗,昏东壁中。”这里提到的“壁”位于现在的?(  )
(A)英仙座 (B)飞马座
(C)白羊座 (D)摩羯座

15. 土星的轨道半长轴约为地球的10倍,它的轨道周期约为地球的?(  )
(A)10倍   (B)100倍
(C)3√100倍 (D)10√10倍

16. 太阳內部的金属元素质量大约占太阳质量的?(  )
(A)2% (B)5% (C)10% (D)15%

17. 今晚参宿七(赤经5h 15m,赤纬-8°11′)在广州(东经113°15′,北纬23°)上中天时,当地的恒星时为?(  )
(A)0h 33m (B)5h 15m
(C)5h 46m (D)1h 4m

18. 一台望远镜的焦距为900mm,口径为70mm,目镜焦距为20mm。其角放大率为?(  )
(A)3.5倍 (B)13倍
(C)45倍  (D)100倍

19. 国际天文学联合会(IAU)成立于?(  )
(A)1910年 (B)1919年
(C)1924年 (D)1969年

20. 赤道式日晷的晷针必须指向?(  )
(A)南天极 (B)北天极
(C)天顶  (D)北黄极

Part 3. 观测与应用

Ⅰ. 不完整的星图

  某天文社准备在2020年某日组织社员到户外观测。他们在策划会议前打印了北京时间凌晨2:30时观测地的星图(附录图1-A),会议中搬完杂物的副社长因为没洗手就碰了星图,手上未干的油墨把星图的一部分染污了。请根据星图回答 21-26 小题。

21. 社团计划外出观测的日期是?(  )
(A)1月2-3号
(B)3月21-22号
(C)5月1-2号
(D)10月2-3号

22. 图1-A中被白框标记的污迹下的星空最接近以下哪项?(  )

1575455776349508.png

23. 用☆符号标注的恒星是?(  )
(A)金牛座α (B)牧夫座α
(C)天鹰座α (D)室女座α

24. 在星图对应的时间里,位于该地的观测者看不到以下哪项?(  )
(A)乌鸦座 (B)星宿一
(C)大陵五 (D)宝瓶座

25. 下列哪个梅西叶天体位于图1-A中用虚线标注的六边形区域内?(  )
(A)M78 (B)M31 
(C)M35 (D)M37

26. 图中的行星数量为?(  )
(A)0 (B)1 (C)2 (D)3

Ⅱ. 百年日全食

  请跟随引导,完成 26-35 小题。

  日全食是一种壮观的天象,历史上这种天象也曾帮助我们革新对宇宙的认知。Henry Cavendish 和 Johann Georg von Soldner 分别在1784年和1801年根据牛顿力学的计算,独立发现了太阳旁边的恒星出现的位置会发生偏移。现在我们用一种相对简单的方法来估算牛顿力学框架下这种偏移的大小(Soares 2005,arxiv:0508030)。

  附录图2-A描述了一个质量为????的粒子受太阳引力影响发生掠射的过程。由于粒子速度远大于逃逸速度,粒子沿双曲线轨道绕太阳运动。到达观测者时,入射路径和出射路径存在一个大小为 ????N = ???? − 2???? 的夹角。此即我们现在关心的偏转角。

  下面关于双曲线的一些几何性质或许能帮到你。

※ 双曲线轨迹往外延伸时会逐渐趋近两条直线,称为渐近线。不难证明,图2-A中cos ???? = 1 ⁄  ????。

27. 天体力学的分析给出了如下两个结论。
①开普勒轨道的半通径????与二体系统的总角动量????,在天体质量???? ≫ ???? 时有如下关系????=????⁄ ????????????2(“≫”表示远大于)。
② ???? > 1 时,系统总机械能为???? = ???????????? ⁄ 2????。
我们可将轨道偏心率表示成?(  )

28. 设粒子经过 C 点时,速度为????。下列说法中错误的是(提醒:我们现在采用牛顿力学的模型)(  )
(A)系统总机械能为
(B)当时,???? 近似等于日心 S 到入射光线的垂直距
(C)系统总角动量为 ???? = ????????????
(D)当 ???? ≥ ????时,

29. 结合 26-28 小题的答案,可推出 1 ⁄ ???? 近似等于?(  )

30. 当 |????| 很小时(例如 |????| < 0.1弧度),???? ≈ arcsin  ???? 。利用上述关系最后我们可得(  )

  1911年,Albert Einstein 应用等效原理和质能方程估算太阳引力造成的光线偏转,得到了和牛顿力学的结果一致的结论。1916年,他又发表了应用广义相对论重新计算的结果。考虑了太阳对时空的影响后,偏转角新结果为????G = 2????N

31. 假设地球公转轨道是正圆,日地距离为????。根据广义相对论的预言,一颗恒星和太阳视圆面中心的角距离为????时,恒星会发生多大的位置偏移?(  )

32. 由 31 小题的答案可知,真实位置在日面边缘的恒星,????G的理论值约为?(  )
(A)1.75″ (B)2.00″ 
(C)0.88″ (D)1.35″

  牛顿力学和广义相对论对星光偏转角预言的差别,提供了一种验证两套理论准确性的途径。日全食时,太阳被月球完全遮挡。仅在这种条件下,天文学家可通过摄影术记录太阳周围星点的位置,并通过精细的测量确定星点的偏移量。

33. 1919年,Arthur Eddington 组织了两支观测队分赴西非的普林西比岛和   观测日全食,检验广义相对论。(  )
(A)智利拉塞雷纳
(B)东欧克里米亚
(C)巴巴西索布拉尔
(D)非洲坦桑尼亚

34. 表2-A给出了全食阶段太阳附近13颗恒星的位置,表2-B给出了两支观测队测量到的7颗恒星的平均偏移值。真实位置在日面边缘的恒星,其位置偏移的测量值约为?(你可能要用到图2-B的空坐标网格)(  )
(A)2.6″ (B)2″ (C)1.5″ (D)0.9″

  一只皮皮羊为了纪念100年前爱丁顿等人的工作,2019年7月特意跟随逐星科技团队到了智利拉塞雷纳观测日全食。它希望用一台口径305mm,焦距3200mm 的折反射望远镜接一台单反相机测量星点的偏移。相机CMOS大小为36mm×24mm,8688×5792像素。图2-C 是它计划拍摄的天区。

35. 以下说法正确的是?(  )
(A)相机能拍下整个目标天区
(B)理论上相机CMOS的分辨率不足以分辨HD49201的位置偏移(不考虑大气、太阳运动等外部因素)
(C)广义相对论预言HD48805的视位置从真实位置往背离日心的方向移动2.63角秒
(D)即使拍不到太阳也可以通过测量HD44805和HD48913间的角距离粗略验证广义相对

36. 出发当天,睡懒觉的皮皮羊出发得太匆忙,忘记带赤道仪重锤。虽然它看到壮观的日全食,但是验证实验泡汤了。如果想在2020年完成实验,它需要?(  )
(A)2020年12月去阿根廷
(B)2020年6月去南非
(C)2020年6月去西藏
(D)2020年12月去南极

Ⅲ. 测距

  在未知星球上的社长已愉快地融入了当地人的生活,并继续研究伽伊缈的传说。伽伊缈的整个旅程花了6年。旅途中他注意到夜空中有一些模糊的小光斑,当在不同的恒星附近观测(这些恒星都不在同一个双星或聚星系统中)时,这些小光斑的相对视位置会有变化。社长根据伽伊缈的纪录,找出了其中两个观测地点上十几个光斑的位置变化,并将信息整理到表3-A中。这些光斑都能通过裸眼或小型望远镜找到。我们先不讨论故事的主角如何实现超光速运动,请结合信息回答 37-43 小题。

37. 这些小光斑是?(  )
(A)行星   (B)彗星
(C)深空天体 (D)以上都有

38. 上述小光斑相对位置改变的现象属于?(  )
(A)自行 (B)视差
(C)进动 (D)哈勃退行

39. 对编号 6 的天体而言,两个观测点构成的有效基线长度是“周年视差”对应的有效基线长度的?(  )
(A)108倍 (B)107倍 
(C)106倍 (D)105

40. 请补全表 3-A 中所有的空白数值。下列哪个编号的光斑最可能是社长所在星系内的目标?(  )
(A)1 (B)3 (C)7 (D)16

41. 在恒星α的一颗行星上,与伽伊缈同行的“仆从”告诉了他其中一些小光斑相对他的运动速度。相关信息已列在表3-A中。伽伊缈从中发现了我们称为“哈勃-勒梅特”定律的规律。社长根据表3-A 绘制出图3-A的哈勃图,请你把编号6、7的数据点补充到图3-A中。忽略 5 Mpc以内的数据点,估算出的哈勃常数 ????是?(  )
(A)88 Mpc/km ∙ s
(B)50 Mpc/km ∙ s
(C)62 Mpc/km ∙ s
(D)74 Mpc/km ∙ s

42. 如果在恒星α附近观测,某光斑的角直径为30角分,它相对伽伊缈的视向速度为20km/s。该光斑的物理大小约为?(  )
(A)2.4 kpc   (B)51 kpc
(C)270 kpc  (D)条件不足,无法估算

43. 这个一万一千年前的故事中,仆从曾感叹自己目睹了好多天体的诞生和终结,它刚被创造出来的时候,哈勃常数是现在11/10。如果按照标准宇宙学模型,在我们关心的演化阶段内,,这里????是红移????下的哈勃常数,Ω????=0.3和ΩΛ=0.7分别????0是今天的物质密度参数和暗能量密度参数的近似值。仆从被创造出来时,宇宙的背景温度约为现在的?(提示:宇宙背景温度 T(1+z))(  )

(A)0.6倍 (B)1.1倍
(C)1.2倍 (D)和现在的一样

Ⅳ. 星际尘埃

  星际介质的主要成分是氢和氦组成的气体。对比星际气体,星际尘埃的质量仅占星际介质很小的比例。但是这些尘埃却参与诸多的天体物理过程,在影响星际介质的温度和化学组成、塑造天体的光谱轮廓、影响恒星形成过程等方面都有起着十分重要的作用。星际尘埃首先引起人们关注的地方,是它们吸收和散射星光引起的消光和红化效应。虽然气体也会散射星光,但研究表明星际气体对消光的贡献可以忽略。

44. 银河系内星际尘埃的总质量大约占星际介质总质量的?(  )
(A)5% (B)1% (C)0.5% (D)0.1%

45. 图4-A是通过实测得到的平均消光曲线。我们不难发现在近紫外-可见光-红外波段的消光曲线近似为一直线(虚线)。取B波段等效波长为442nm,V波段的等效波长为540nm。根据拟合直线我们可发现在上述波段范围内,色余 ????????−???? 和V波段的消光 ???????? 存在如下关系(  )
(A)???????? ⁄ ????????−???? = 0.34
(B)???????? ⁄ ????????−???? = 1.3
(C)???????? ⁄ ????????−???? = 3.1
(D)???????? ⁄ ????????−???? = 5.2

46. 上述比值称为总选消光比R,它在不同的方向上会有差异,数值一般在2~6左右,大部分方向上接近上题答案的值。一颗恒星测出B波段和V波段的视星等分别为9.7等和9.5等, 绝对星等分别为2.9等和2.5等。如果不修正消光的影响,通过V波段数据测出的恒星距离将是真实值的?(取45小题答案)(  )
(A)0.62倍 (B)1.10倍
(C)1.33倍 (D)1.57倍

47. 消光现象反过来可以帮助我们了解尘埃的物理和化学性质。例如根据散射的规律,可推知同样条件下紫外-可见光波段上的总选消光比与尘埃大小大致有如下关系(  )
(A)尘埃总体大小越大,R 越大
(B)尘埃总体大小接近217.5nm时,R 最大
(C)尘埃总体大小越小,R 越大
(D)尘埃整体大小和R 无关

48. 在图 4-A 的消光曲线中,可以看到217.5nm附近消光明显增强。一开始天文学家猜测这可能是星际介质中的石墨颗粒造成的。石墨结构如图 2-B 所示,当石墨中的离域π电子发生π → π∗的跃迁时,产生的吸收特征恰好在217.5纳米附近达到最强。后来,天文学家发现单靠石墨无法完全模拟出观测的结构特征。他们猜测尘埃中存在另一类含碳原子环和非定域
π电子的物质,对217.5nm处的吸收特征有重要贡献。这类物质最可能是下列四项中的?(  )
(A)烷烃
(B)双环 [4.4.0] 癸烷 (  )
(C)单烯烃
(D)多环芳烃

49. 根据表4-A,以下哪项对裸露在星际空间中的分子破坏最小?(  )
(A)γ射线
(B)宇宙线
(C)Lyα光子(莱曼α)
(D)Hα光子(巴尔末α)

1575486504622648.png50. 尘埃可以参与诸多天体化学过程及提供适合的反应场所。例如可以通过右图两种方式吸附气体中的原子或官能团合成新物质。以下推测最不合理的是?(  )
(A)分子云中的氢分子主要通过尘埃催化合成
(B)消光小的弥漫星际介质中,尘埃表面覆盖的分子结构一般会比消光大的巨分子云内部尘埃上覆盖的分子简单
(C)O 型星附近区域温度较高,加速了分子的合成,我们能观测到很强的分子谱线
(D)星际尘埃的消光效应可以保护高密度星际介质内部的复杂有机分子

附录

太阳质量 1.99×1030kg
太阳半径 6.96×108m
太阳光度 3.9×1026W
太阳目视绝对星等 4.83
太阳绝对热星等4.75
地球质量 5.96×1024kg
地球半径 6378km
月球质量 7.35×1022kg
月球半径 1738km
火星质量 6.42×1023kg
火星半径 3397km

万有引力常数G=6.67×10-11N · m2 · kg-1
普朗克常数h=6.63×10-34J/s
波尔兹曼常数k=1.38×10-23J/K
斯蒂潘-波尔兹常数σ=5.67×10-8W·m-2·K-4
维恩位移常数b=2.898×10−3m · K
真空光速c=3.00×108m/s
元电荷e=1.60×10-19C
辐射常量a=7.57×10-16J · m-3 · K-4
质子质量m=1.67×10-27kg
电子质量m=9.11×10-31kg
中子质量m=1.67×10-27kg

万有引力定律万有引力定律

普森公式m=-2.5lgE +常数

距离模数m-M=5lgr-5,其中r为天体距离,以秒差距为单位

活力公式活力公式

维恩位移定律λmax = b ⁄ T,其中λmax为黑体谱峰值波长,T为黑体表面温度,b为维恩位移常数

Ⅰ. 不完整的星图

1575468565254337.png

图1-A 广东某地某日北京时间2:30的星图。部分区域被颜料染污。

Ⅱ. 百年日全食

1575489313683769.png

图2-A 牛顿力学下星光偏折现象的分析图。S是太阳中心,恒星发出的光子(可当作质量很小的粒子)经过太阳附近时,受引力影响以双曲线轨道掠射,C是轨道近日点,CS=。双曲线的半通径为p(过S作CS的垂线,与双曲线相交与两点,其中一点与S连成的线段即半通径),渐近线和CS的夹角为β ,光子出射和入射方向的角度差为????N。现实中????N非常小,双曲线轨迹和一条垂直CS的直线非常接近,本图为了便于分析夸大表现????N。原图取自Soares (2005)。

1575489745111101.png

图2-B

1575490008466815.png

图2-C 计划拍摄的天区模拟图,上面标注出了若干恒星的名字,星等值和到日心的角距离(不考虑引力作用,单位为角分)。

1575490442374731.png

表2-A 1919年日全食观测所用到的太阳附近部分恒星的参数(Dyson 1917)。左起第一列是恒星编号,第二列是恒星名字,第三列是视星等,第四列是恒星到日面中心的真实角距离。

1575490698269354.png

表2-B 1919年爱丁顿实验测出的7颗恒星的位置偏移(Dyson 1919)。左起第一列是恒星编号,与表2-A的编号一致;第二列是????G的估算值(已删除),第三列是偏转角的测量均值,单位是角秒。

Ⅲ. 测距

表3-A 在两个相距1024pc的观测点(α星和β星)上,20个模糊的面源的位置变化情况。第一列是天体的编号;第二列是α星到面源的连线与α星到β星连线的夹角;第三列是在β星观测点上看到的面源视位置相对于在α星观测点上面源视位置之间的角距离;第四列是测量面源到α星距离的有效基线长度(提示:考虑α星和β星的间距以及方向角 i);第五列是面源到α星的距离;第六列是面源相对于α星观测点的平均视向速度(已扣除恒星绕星系中心运动的影响)。

图3-A 根据表3-A 数据绘制的哈勃图。图中仍缺编号6、7的数据点,需要你来补充。

Ⅳ. 星际尘埃

1575469646928277.png

图4-A 实测得出的银河系平均消光曲线。上方的横坐标是波长,单位为nm;下方等距的横坐标是波长的倒数,单位为μm−1;纵坐标为消光值????,单位为星等。取自《Fundamental Astronomy 5th》。

图4-B 石墨结构的侧视图(左)和俯视图(右)。每个碳原子会与同层另外三个碳原子形成σ键,使得六个碳原子在同一平面形成正六边形环,构成了图中的“蜂巢状”结构。不同的碳原子层在范德瓦尔斯力的作用下平行累叠。而碳原子剩下的一个电子将在离域π轨道上运动,成为离域π电子。

表4-A 一些常见的化学键键能和光致离解需要的光子波长。第一列是化学键与键序;第二列是键能;第三列是使其光致离解所需的光子波长上限。所谓光致离解是指分子获得光子的能量后化学键被破坏,分子分解为原子或者更小分子的过程。

高年组答案
1-5     DADBC     6-10   CBACB
11-15 CADBD     16-20 ABCBB
21-25 ACDDB     26-30 ADCAA
31-35 BACBD     36-40 ACBAC
41-45 DDCBC     46-50 CADDC
广东天文学会、第十四届中学生天文知识竞赛组委

Contact

如需邀请站长参加天文类活动(科普讲座、研学、商业活动等),请邮件联系站长详谈。严正声明:近期发现有公司假冒本人网站,在此声明除了sunguoyou.lamost.org以外所有打着本人旗号的网站均为假冒,请广大爱好者注意甄别,谨防受骗!